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Abstract This paper develops a simple diagnostic for the

investigation of uncertainty within genetic linkage maps

using a Bayesian procedure. The method requires only the

genotyping data and the proposed genetic map, and cal-

culates the posterior probability for the possible orders of

any set of three markers, accounting for the presence of

genotyping error (mistyping) and for missing genotype

data. The method uses a Bayesian approach to give insight

into conflicts between the order in the proposed map and

the genotype scores. The method can also be used to assess

the accuracy of a genetic map at different genomic scales

and to assess alternative potential marker orders.

Simulation and two case studies were used to illustrate the

method. In the first case study, the diagnostic revealed

conflicts in map ordering for short inter-marker distances

that were resolved at a distance of 8–12 cM, except for a

set of markers at the end of the linkage group. In the second

case study, the ordering did not resolve as distances

increase, which could be attributed to regions of the map

where many individuals were untyped.

Introduction

A genetic linkage map represents the distribution of

recombination within a genome, by allocating genetic

markers to linkage groups and ordering and assigning

positions to these markers according to the patterns of

recombination between them. The relative positioning is

based purely on observed recombination events across a

structured population, which is dependent upon the distri-

bution of chiasmata along the chromosomes. When geno-

type scores for a large number of genetic markers are

available, the evaluation of all possible marker orders

within each linkage group is not practically possible and so

the optimal ordering may not be found. Moreover, because

of errors in genotyping (mistyping), there are likely to be

conflicts between the overall best order at local and larger

scales. Mapping programs (e.g. Lander et al. 1987; Lincoln

and Lander 1992; Jansen et al. 2001; Van Ooijen 2006; Wu

et al. 2008; de Givry et al. 2005; Cartwright et al. 2007;

Cheema and Dicks 2009) find a compromise ordering by

optimizing with respect to an objective function. Mapping

methods based on Bayesian multipoint models have been

proposed by Neumann (1991), Stephens and Smith (1993),

Schiex and Gaspin (1997), George et al. (1999), Rosa et al.

(2002), York et al. (2005), Gasbarra and Sillanpää (2006)
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and George (2005). The purpose of this paper is not to

address the global problem of finding an ordering of all

markers, but to use Bayesian methods to provide a simple

diagnostic to examine the local compatibility of the map

ordering with the observed data.

Various simple diagnostics are used to validate map

orderings. R/qtl (Broman et al. 2003) provides a plot of

pairwise recombination fractions for markers in map order

that visually highlights individual markers that are clearly

out of position. Apparent double recombinations, where a

single locus genotype is flanked by loci of alternative

genotype, suggest an apparent double cross-over. As with

recombinations occurring within very short distances, these

are often used as indications of misordering (or mistyping).

No probabilistic diagnostic procedures appear to have been

developed.

This paper develops a simple probabilistic diagnostic

procedure to assess the uncertainty associated with marker

order in a genetic linkage map. In some senses, this can be

seen as a Bayesian extension of the pair-based method of

R/qtl to a triple-based method. We deal with plant popu-

lations of bi-parental inbred lines where, at each marker,

each individual takes one of two possible genetic states

with probability equal to 0.5. This includes populations of

doubled haploid (DH), advanced recombinant inbred lines

(RILs) or backcross populations. The method could easily

be extended for F2 or early generation RILs, where both

homozygous and heterozygous individuals are present

(three genetic states). A diagnostic method has been

developed that assesses the posterior probability of differ-

ent orders for triples of markers, and hence determines the

uncertainty associated with the proposed order. The marker

triples can be chosen to suit different purposes: a set of

neighboring markers may be chosen to assess the uncer-

tainty at small scales, or more distant markers may be

chosen to assess the reliability of the map at larger scales.

Our approach accommodates markers with a substantial

proportion of missing genotype data and also allows for

mistyping. The method is similar in spirit to that of

Stringham and Boehnke (2001), who also calculated pos-

terior probabilities for different marker orders, although

they used their results directly for QTL detection, taking

into account uncertainties in map order, rather than for

investigation of the linkage map. Neumann (1991) also

calculated posterior probabilities of ordering for marker

triples, but used the estimated inter-locus genetic distances,

and did not take account of missing or mistyped genotype

data. Ehm et al. (1996), Douglas et al. (2000) and Sobel

et al. (2002) used a model similar to ours, but with the

benefit of information from pedigree relationships and with

the aim of identifying the occurrence of mistyping; our aim

in allowing for mistyping is simply to reflect it in the

resulting uncertainty in marker order.

The paper first recaps the background to the problem

and introduces notation. Calculation of the posterior

probabilities is then described in detail. A small simulation

is used to demonstrate the behavior of the method, and the

method is applied to the analysis of two existing experi-

mental data sets. Finally, potential uses and extensions of

the method are discussed. Software for implementing the

methodology is freely available, as described in

‘‘Software’’.

Methods

Notation and assumptions

For simplicity in developing the method, we work with

genotype data from a single bi-parental cross for a set of

markers from a single study. We assume that there are two

possible genetic states, and the marginal probability of an

individual taking either genotype at a marker is equal,

which is appropriate for DH, RIL or back-cross populations

under Mendelian segregation and in the absence of segre-

gation distortion. Generalization of these assumptions is

considered in ‘‘Discussion’’. Finally, we assume that a

genetic linkage map has been proposed, which we wish to

examine for evidence of local inaccuracies.

Consider a triple of markers on the genetic map, labeled

A, B and C, each with two possible genetic states labelled

as 0 or 1. Let A denotes the true genotype of an individual

at marker locus A, where A takes values in {0, 1}; similarly

B and C denote the true genotypes at marker loci B and C,

respectively. Let M denotes the unknown true map order of

markers A, B, C, so M has three possible states:

M = ABC, M = BCA or M = CAB. We do not need to

distinguish orientation, so for example M = CBA is

equivalent to M = ABC. For M = ABC, we assume that

recombinations in interval AB are independent of those in

BC. Let q1 denotes the probability of recombination

between the first and the second of the three markers in

map M, and let q2 denotes the probability of recombination

between the second and the third of these markers. Thus,

for M = ABC, q1 relates to interval AB, and q2 to BC (see

Fig. 1).

Each marker may be mistyped or untyped, where we

assume that the probability of a marker being mistyped or

untyped does not depend on the observations at other

markers, on the true genotype of the individual, or on the

Fig. 1 One arrangement of three markers (A, B and C), showing

probability of recombination q1 within interval AB and q2 within

interval BC
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true map M. Let a denote the observed genotype on marker

A, taking values in {-1, 0, 1}, where -1 denotes that the

marker is untyped; similarly, b and c denote the observed

genotypes of markers B and C. We define paA to be the

conditional probability of observing a given that the true

genotype is A and given that a 6¼ �1: For a = -1, as

explained below, it is convenient to define:

p�1A ¼ 1: ð1Þ

We similarly define pbB and pcC. Initially, we assume that

(mis)typing probabilities paA, pbB, pcC are all known, but

may differ. For a common probability � of mistyping, we

would set paA (and pbB; pcC) as in Table 1. Let n denote

the number of individuals in the study. The data are the

counts rabc of individuals in each observed genotype

(a, b, c), combined as a vector r of length 27.

Posterior marker order probabilities

We use a Bayesian approach to the calculation of posterior

probabilities for each map order. The joint probability

distribution of the data and parameters can be written as

pðM; q1; q2; �; rÞ ¼ ‘ðr; M; q1; q2; �ÞpðMÞpðq1Þpðq2Þpð�Þ;

where ‘ðr; M; q1; q2; �Þ is the likelihood of the data r under

map M, conditional on the recombination probabilities q1

and q2 and mistyping rate �; pðMÞ is the prior probability of

map M, p(q1) and p(q2) are the prior density functions for the

recombination probabilities and pð�Þ is the prior density

function for the mistyping rate. As we are investigating the

map, we do not wish to impose any prior information on

either the map order or the recombination frequencies, and so

we use equal prior probabilities for the three map orders,

p(M): 1/3, and uniform probability density functions on the

range [0, 0.5] for the recombination fractions q1 and q2. We

assume a prior Beta distribution for the mistyping rate, with

pð�Þ ¼ �
a�1ð1� �Þb�1

Bða; bÞ ; ð2Þ

for � 2 ½0; 1� where Bða; bÞ is the Beta function. This dis-

tribution allows the prior density to be concentrated at low

mistyping rates, as would be expected in most studies, but

also allows a wide range of distributional shapes.

The joint posterior distribution of the parameters takes

the form

pðM; q1; q2; �jrÞ ¼
pðM; q1; q2; �; rÞ

pðrÞ
¼ pðM; q1; q2; �; rÞP

M

R
q1;q2;�

pðM; q1; q2; �; rÞdq1dq2d�

and the marginal posterior distribution of map order M can

be found by integrating over the other parameters as

pðM; q1jrÞ ¼
R

q1;q2;�
pðM; q1; q2; �; rÞdq1dq2d�

P
M

R
q1;q2;�

pðM; q1; q2; �; rÞdq1dq2d�
: ð3Þ

Evaluation of the posterior probabilities of different map

orders therefore requires integration of the joint probability

distribution, which is a product of the data likelihood and

the prior distributions. The constant prior distributions of

the recombination probabilities and the map order appear

in both the numerator and the denominator of the posterior

probabilities and so can be ignored.

Log-likelihood

The counts rabc of individuals in each observed genotype

(a, b, c) are multinomially distributed, for which the log-

likelihood under map M is:

LMðq1; q2Þ ¼ f þ
X

a;b;c

rabcpða; b; c j MÞ; ð4Þ

where pða; b; c j MÞ is the map-specific probability that an

individual has observed genotype (a, b, c), and f is the

logarithm of a combinatoric term which is constant with

respect to ðq1; q2Þ and map M. We assume that the

observed genotype at each locus is independent of all other

observations, given the true genotype. Let pðajAÞ denote

the probability of observed genotype a given true genotype

A. Similarly, p(b|B) and p(c|C) for markers B and C,

respectively. From these assumptions, it follows that

pða; b; c j MÞ ¼
X

A;B;C

pðajAÞpðbjBÞpðcjCÞh�ABC; ð5Þ

where h�ABC is the probability of true genotype (A, B, C).

The superscript * is used throughout to indicate

dependence on the map order M and recombination

probabilities, q1 and q2. We assume a population with

two possible true genotypes at each marker which occur

with equal probability. For map M = ABC and

recombination probabilities (q1, q2), the probability of

true genotype (A, B, C) is therefore written as

h�ABC ¼
1

2
qdAB

1 ð1� q1Þð1�dABÞqdBC

2 ð1� q2Þð1�dBCÞ; ð6Þ

where dAB and dBC are cross-over indicators for intervals

AB and BC:

Table 1 Definition of paA for a mistyping probability of �

A

0 1

a

-1 1 1

0 1� � �

1 � 1� �
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dAB ¼ A� Bj j; dBC ¼ B� Cj j:

Thus, dAB = 0 denotes no recombination and dAB = 1

denotes recombination between markers A and B.

Now suppose for an individual that the probability of

marker A being untyped is a, independently of the true geno-

type of that individual and of the true map M. Given that the

individual has been typed at marker A and has true genotype

A, we assume that the probability of observing type a is paA.

Then the probability of observing a given true genotype A is:

pðajAÞ ¼
a; a ¼ �1

ð1� aÞpaA; a ¼ 0; 1

�

¼ paA 1� að ÞIða 6¼�1ÞaIða¼�1Þ;

ð7Þ

using definition (1), where Ið�Þ is the indicator function

which takes the value 1 when its argument is true and zero

otherwise. We derive similar expressions for markers B

and C, where b and c denote the probabilities of markers B

and C, respectively, being untyped. Hence,

pðbjBÞ ¼ pbB 1� bð ÞIðb 6¼�1ÞbIðb¼�1Þ ð8Þ

pðcjCÞ ¼ pcC 1� cð ÞIðc 6¼�1ÞcIðc¼�1Þ: ð9Þ

Substituting (7–9) into (5) gives:

pðabc j MÞ ¼ egabcx�abc; ð10Þ

where

x�abc ¼
X

A;B;C

paApbBpcCh�ABC: ð11Þ

and gabc is constant with respect to (q1,q2) and map M.

Substituting (10) into (4) gives:

LMðq1; q2Þ ¼ f þ hþ
X

a;b;c

rabc ln x�abc; ð12Þ

where f and h =
P

a,b,c rabc gabc are constant with respect

to the parameters ðq1; q2; �Þ and map M. For maps BCA

and CAB, similar calculations apply.

Integration

Integration over the joint probability function for the three

parameters, q1, q2 and �; was achieved by simple numerical

integration, using the trapezium rule with a given number of

intervals across the range of each parameter. Intervals of size

0.01 gave stable values of the posterior probabilities to two

decimal places when the total number of lines was \1,000.

Smaller intervals might be required for larger numbers of lines.

Evaluation of the method by simulation

Simulation is useful to demonstrate the properties of the

method under known conditions. Data were generated from

the underlying multinomial distribution for a triple of

markers (A, B, C) in order M = ABC for populations of

size n = 50 or n = 100 lines. The distances between

markers A and B (dAB) and between B and C (dBC) were

set equal or unequal (dBC smaller), with distances con-

verted into probabilities of recombination using the Hal-

dane distance function (Haldane 1919). Mistyping was

either absent or present with probability � ¼ 0:025 and

with genotype scores at each locus either all present

(q = 0) or missing with probability q = 0.5. Mistyping

and missingness were applied to genotype scores A, B, C

independently at random for each line. On average, the data

sets with n = 100 lines and 50 % missing scores had all

genotype scores present for 1 in 8 triples (denoted full

triples), but the same number of genotype scores observed

as for n = 50 lines with no missing observations. A Beta

distribution with parameters a = 1 and b = 40 (mean

0.024, standard deviation 0.024, mode 0) was used as the

prior distribution for the mistyping probability. For each

parameter combination, 100 data sets were generated. For

each data set, the posterior probabilities of map orders were

calculated as described above.

Application to genetic linkage maps

The posterior probabilities for triples can be used in several

different ways to investigate genetic maps. It is possible to

examine specific triples of interest, or all consecutive tri-

ples within the map. In the case where a single marker is

misplaced, we can predict the pattern of posterior proba-

bilities that will occur. In practice, the compromise

ordering generated by a mapping procedure is rarely this

straightforward. In addition, examining triples of consec-

utive markers will result in uninformative posterior prob-

abilities where there are few observed recombinations. It is

often more useful to scan triples of markers at a specified

distance such that a reasonable number of recombinations

would be expected, or across a range of distances. For

relatively sparse maps, the use of a minimum distance may

be more realistic, and this approach was taken in the first of

the two examples below.

Brassica napus BnaTNDH population

The BnaTNDH population (Qiu et al. 2006) is a population of

202 doubled haploid oilseed rape (Brassica napus, n = 19)

derived from an F1 with homozygous parents TapidorDH

(derived from a European winter variety) and Ningyou7

(derived from a Chinese semi-winter variety). The population

shows segregation for many agronomically important traits

(Shi et al. 2009). The genetic map was obtained from the

brassica.info website (http://www.brassica.info/CropStore/

maps.php, map identifier BnaTNDH_05_2008b) and the
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genotype scores were obtained from the John Innes Centre

website (http://www.jic.ac.uk/staff/ian-bancroft/tapidor-_x.

htm). This analysis used a single linkage group, A9, which

has 61 markers. A Beta distribution with parameters a = 1

and b = 40 was used as the prior distribution for the mis-

typing probability. Each marker on the linkage group was

evaluated with respect to its nearest neighbors after applying

a minimum distance criterion (2, 4, 8 or 12 cM).

Arabidopsis Col 9 Ler population

The Col 9 Ler population (Lister and Dean 1993) has been

widely used for genetic studies in the model plant organism

and is a population of 101 RILs of Arabidopsis thaliana,

with segregation and map data available from the NASC

website (ftp://ftp.arabidopsis.org/Maps/seqviewer_data/sv

_marker.data and http://arabidopsis.info/RI_data/full_

markers.may2001.xls). This analysis used Chromosome 2

with 80 markers. A Beta distribution with parameters

a = 1 and b = 40 was used as the prior distribution for the

mistyping probability. In this case, with a higher density of

markers on the map, marker triples that satisfied a specific

range of inter-marker distances were assessed. For each

range, a marker was assessed if it had one neighbor on each

side within the specified inter-marker range. If several

neighbors on one side fell within that range, then the

neighbor with inter-marker distance closest to the range

mid-point was selected. The ranges chosen were: 0–4, 4–8,

8–12, 12–16, 16–20, 21–27 and 27–33 cM. These ranges

were chosen to enable a reasonable number of triples to be

assessed at each distance (min = 49, max = 78). For maps

with a denser marker set, we would expect to be able to

reduce the ranges and still find sufficient triples satisfying

the distance criterion.

Results

Simulation

A set of possible inferences from the posterior probabilities

is presented in Table 2 as a summary of the simulations.

The following decision rule was used; if the posterior

probability for any order was [0.5, this was designated as

Table 2 Occurrence of

inferences on marker order

based on 100 simulated data sets

Decision made on marker order

when posterior probability[0.5,

no decision made when all

posterior probabilities B0.5.

True marker order = ABC, with

inter-marker distances dAB and

dBC cM. Simulations used

n lines, mistyping probability e
and probability q of missing

genotype information

dAB dBC n � q Decision made

ABC BCA CAB None

5 2 50 0 0 54 1 0 45

5 2 50 0.025 0 51 20 8 21

5 2 100 0 0 84 2 0 14

5 2 100 0.025 0 66 16 1 17

5 2 100 0 0.5 35 12 0 53

5 2 100 0.025 0.5 39 19 13 29

10 4 50 0 0 74 4 1 21

10 4 50 0.025 0 67 13 2 18

10 4 100 0 0 92 3 0 5

10 4 100 0.025 0 72 17 0 11

10 4 100 0 0.5 55 18 3 24

10 4 100 0.025 0.5 49 20 7 24

5 5 50 0 0 79 1 1 19

5 5 50 0.025 0 61 7 6 26

5 5 100 0 0 97 0 0 3

5 5 100 0.025 0 80 5 5 10

5 5 100 0 0.5 53 2 4 41

5 5 100 0.025 0.5 52 12 11 25

10 10 50 0 0 94 0 1 5

10 10 50 0.025 0 76 4 5 15

10 10 100 0 0 99 1 0 0

10 10 100 0.025 0 96 1 2 1

10 10 100 0 0.5 66 7 10 17

10 10 100 0.025 0.5 62 11 12 15
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the inferred order, if all of the posterior probabilities were

B0.5, no decision was be made. Clearly, many other

decision rules could be chosen in practice, but this simple

rule is adequate to illustrate the performance of the method.

The mean posterior probabilities and observed recombi-

nation fractions are shown in Table 3.

The correct inference on marker order was made more

often, with a higher posterior probability, as the number of

full triples increased, as the inter-marker distances

increased and in the absence of mistyping. The occurrence

of indecision was more common for smaller distances (less

observed recombination). For unequally spaced markers,

an incorrect decision was more often made in favor of

permuting the closer pair of markers (i.e., BCA rather than

ABC). Incorrect decisions were evenly spread over both

possibilities when the inter-marker distances were equal.

Where incorrect decisions occurred, they resulted from

a pattern of observed recombination contrary to that

expected from the inter-marker distances. Table 3 shows

that the presence of mistyping with probability of 0.025

adds 0.03–0.05 to the observed recombination fractions.

In combination with missing genotype scores, anomalous

patterns of recombination become far more likely, espe-

cially when the true recombination probabilities are low.

Figure 2 shows the full distribution of posterior probabil-

ities for the distances dAB = 10 cM, dBC = 4 cM repre-

sented in barycentric triangles. The probability of incorrect

inference (close to the lower vertices) increases as the

number of full triples decreases. Uncertainty, as repre-

sented by the area in the centre of the triangle, away from

the vertices, also increases as the number of full triples

decreases and when mistyping is present.

Instead of exploring inferences that result from given

combinations of true (expected) recombination fractions,

as in the above simulations, we can proceed in the opposite

direction by studying the inferences that result from given

combinations of observed recombination fractions. Table 4

provides posterior distributions on marker order for given

combinations of observed recombination fractions,

assuming n = 100 lines and prior distributions as per the

simulations. This shows that uncertainty in marker order

arises when an observed recombination rate is high.

Table 3 Mean posterior probabilities and observed recombination fraction (RF) from 100 simulated data sets

dAB dBC n � q Mean posterior prob. Mean RF

ABC BCA CAB AB BC CA

5 2 50 0 0 0.59 0.30 0.11 0.04 0.02 0.06

5 2 50 0.025 0 0.53 0.32 0.15 0.09 0.06 0.10

5 2 100 0 0 0.74 0.23 0.04 0.05 0.02 0.06

5 2 100 0.025 0 0.65 0.27 0.08 0.09 0.07 0.11

5 2 100 0 0.5 0.46 0.35 0.20 0.05 0.02 0.07

5 2 100 0.025 0.5 0.42 0.33 0.25 0.09 0.07 0.11

10 4 50 0 0 0.72 0.23 0.05 0.08 0.04 0.12

10 4 50 0.025 0 0.67 0.25 0.08 0.13 0.09 0.16

10 4 100 0 0 0.84 0.15 0.01 0.09 0.04 0.12

10 4 100 0.025 0 0.72 0.25 0.02 0.13 0.08 0.16

10 4 100 0 0.5 0.51 0.32 0.17 0.09 0.04 0.13

10 4 100 0.025 0.5 0.49 0.32 0.19 0.12 0.08 0.16

5 5 50 0 0 0.70 0.16 0.14 0.04 0.04 0.08

5 5 50 0.025 0 0.62 0.20 0.18 0.09 0.08 0.12

5 5 100 0 0 0.88 0.06 0.06 0.05 0.05 0.09

5 5 100 0.025 0 0.75 0.14 0.11 0.09 0.09 0.13

5 5 100 0 0.5 0.50 0.24 0.26 0.04 0.05 0.09

5 5 100 0.025 0.5 0.49 0.27 0.25 0.10 0.09 0.15

10 10 50 0 0 0.84 0.07 0.09 0.09 0.09 0.17

10 10 50 0.025 0 0.73 0.12 0.15 0.13 0.14 0.20

10 10 100 0 0 0.95 0.02 0.03 0.09 0.10 0.17

10 10 100 0.025 0 0.88 0.06 0.06 0.13 0.13 0.19

10 10 100 0 0.5 0.58 0.21 0.21 0.09 0.09 0.17

10 10 100 0.025 0.5 0.55 0.22 0.22 0.13 0.12 0.21

True marker order = ABC, with inter-marker distances dAB and dBC cM. Simulations used n lines, mistyping probability e and probability q of

missing genotype information
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Brassica napus BnaTNDH population

Figure 3 plots the posterior probabilities of the map order

against marker position, using a filled circle to indicate that

an incorrect order has posterior probability [0.5, in order

to distinguish uncertainty from a strong prediction of the

incorrect order. Apart from a dubious segment around

position 120 cM, this linkage group appears well resolved

at an inter-marker distance of 8 cM, although there

appeared to be local difficulties at smaller distances,

especially around position 70 cM. The anomaly for the

markers around position 120 cM is caused by markers at

the end of the linkage group (positions 130–139 cM),

which form a subset with relatively high recombination

with respect to the rest of the linkage group, but with low

recombination with a subset between positions 70 and

95 cM. At minimum distance 12 cM, this unexpected

pattern of recombination gave high posterior probability to

the order CAB. These results suggest that further

inspection of this set of markers should be carried out to

verify that they have been assigned to the correct linkage

group.

Arabidopsis Col 9 Ler population

With inter-marker distances in a specific range, it is rea-

sonable to examine the distribution of the map order pos-

terior probabilities by genetic distance in order to gain

some information on map reliability at different genetic

distances. Figure 4 plots the proportion of posterior prob-

abilities for the map order above given threshold values,

e.g. 87.2 % of the posterior probabilities for the map order

are greater than 0.2 for inter-marker distance 0–4 cM. At

inter-marker distances where the genetic map is in agree-

ment with the observed recombination, we would expect

high posterior probabilities for the mapped marker order.

For this map, the estimation appears to improve as inter-

marker distances are increased up to around 8 cM, but then

gets worse at larger distances. This is supported by the data

in Fig. 5, which show that some areas of the map appear

inconsistent with the observed recombinations across all

scales. Further examination of the raw data shows that the

positions which consistently show low posterior probabil-

ities correspond to sets of markers with a high probability

of being untyped (missing data). The diagnostic results

would allow targeted genotyping in these areas to resolve

this uncertainty.

Discussion

We have shown that posterior probabilities can be calcu-

lated for triples of markers and used to assess the uncer-

tainty associated with different orderings. A certain amount

of discrepancy between a given map order and the posterior

probabilities may be expected at short distances, due to

mistyping errors that cannot be resolved and require

compromise to obtain an ordering that is acceptable across

the full set of markers. These discrepancies should become

less important as the inter-marker distances increase, and

consequently uncertainty in marker order should also

decrease. We have shown that this can be assessed by

plotting posterior probabilities as a function of marker

position (BnaTNDH example), or by examining the dis-

tribution of posterior probabilities (Col 9 Ler example),

for a given range on inter-marker distances. When inte-

grating genetic maps, the posterior probabilities assist in

quantifying uncertainty about different potential positions

to be occupied, as markers are incorporated from one map

into another. For the Col 9 Ler population, a sequence

pseudochromosome assembly that positions the markers on

the genome is also available from the same website. The

A B

C D

E F

Fig. 2 Posterior probabilities for true marker order ABC with inter-

marker distances dAB = 10 cM, dBC = 4 cM. Points are jittered so

that duplicates are visible. Simulations used n lines, mistyping

probability � and probability q of missing genotype information
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markers can then be assessed with respect to their physical

order. This analysis will highlight discrepancies between

the physical order and observed recombination.

This approach can easily be extended. The extension to

a set of independent studies on the same population, using

overlapping sets of markers, is straightforward and results

Table 4 Posterior distributions

of marker order for various

combinations of observed
recombination fractions q̂AB and

q̂BC; assuming n = 100 lines

and prior distributions as per the

simulations

q̂AB Map M q̂BC

0.20 0.25 0.30 0.35 0.40 0.45

0.20 ABC 1.00 1.00 0.98 0.91 0.75 0.59

BCA 0.00 0.00 0.00 0.00 0.00 0.00

CAB 0.00 0.00 0.02 0.09 0.25 0.41

0.25 ABC 1.00 1.00 0.99 0.95 0.80 0.62

BCA 0.00 0.00 0.00 0.00 0.00 0.00

CAB 0.00 0.00 0.01 0.05 0.20 0.38

0.30 ABC 0.98 0.99 1.00 0.97 0.85 0.65

BCA 0.02 0.01 0.00 0.00 0.00 0.00

CAB 0.00 0.00 0.00 0.03 0.15 0.35

0.35 ABC 0.91 0.95 0.97 0.97 0.87 0.67

BCA 0.09 0.05 0.03 0.02 0.01 0.00

CAB 0.00 0.00 0.00 0.02 0.12 0.33

0.40 ABC 0.75 0.80 0.85 0.87 0.82 0.66

BCA 0.25 0.20 0.15 0.12 0.09 0.06

CAB 0.00 0.00 0.00 0.01 0.09 0.29

0.45 ABC 0.59 0.62 0.65 0.67 0.66 0.56

BCA 0.41 0.38 0.35 0.33 0.29 0.22

CAB 0.00 0.00 0.00 0.00 0.06 0.22

A

B

C

D

Fig. 3 Posterior probabilities

for marker triples on linkage

group A9 for the BnaTNDH

genetic map, plotted against

position of central marker.

Minimum inter-marker

distances: a 2 cM, b 4 cM,

c 8 cM, d 12 cM. Solid circles
Markers with posterior

probability [0.5 for a marker

order different from that given

by the BnaTNDH genetic map
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in the same estimation procedure. The extension to a set of

studies on different populations using a common marker

set on the same genetic map is also straightforward. In this

case, labelling of the parents in different populations can be

arbitrary, as it is the presence of recombination rather than

the genotype scores that give information on marker order.

The method could also be extended to other populations,

such as F2 (or Fn) lines, simply by modifying the number of

possible genetic states and the probability of the observed

genotype in (6). One area of interest is the application to

map integration across different populations (Wang et al.

2011). The method can be used to test or evaluate different

marker orders and give insight into the amount of uncer-

tainty present. In this case, a different map order might be

required for different populations. For example, a local

rearrangement of the markers in one subpopulation may

have occurred, or a similar rearrangement may have

occurred in a paralogous segment of the same genome. The

method can be extended to evaluate the evidence for such

genomic rearrangements.

Fig. 4 Proportion of posterior

probabilities above a given

threshold for a range of inter-

marker distances for the

Col 9 Ler genetic map: crosses
0–4 cM, circles 4–8 cM, plus
symbols 8–12 cM, stars
12–16 cM, triangles 16–20 cM,

squares 21–27 cM, diamonds
27–33 cM

A

B

C

D

E

Fig. 5 Posterior probabilities

for marker triples on

chromosome 2 for the

Col 9 Ler genetic map, plotted

against position of central

marker. Minimum inter-marker

distances: a 2 cM, b 4 cM,

c 8 cM, d 12 cM, e 18 cM.

Solid circles Markers with

posterior probability [0.5 for a

marker order different from that

given by the Col 9 Ler genetic

map
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Software

Numerical integration was implemented in a Fortran sub-

routine, with arguments provided to specify the data, the

number of integration points for each parameter and

parameters of the prior Beta distribution function for the

mistyping rate. The subroutine returns the integrals in

Eq. (3) and posterior probabilities derived from it. Inter-

faces to the Fortran subroutine are available as an R package

or GenStat procedures. The R package can be freely

downloaded from http://www1.maths.leeds.ac.uk/*wally.

gilks/LinkageMapAppraisalR-package/Welcome.html. In

this package, function pp performs the calculation of pos-

terior probabilities, and functions triplecheck and

groupcheck work with a cross object, as defined by

package R/qtl (Broman et al. 2003).
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